Towards Interactive Clustering on Parallel Environment
نویسنده
چکیده
Clustering is one of the major data mining applications. An obvious characteristic of data mining distinguished from traditional data processing is that the conclusion of data mining cannot be predicted. Data mining is a multi-step process, and user must be allowed to be the front and the center in this process, especially clustering mining method. In this paper, the necessity of interactive data mining is illustrated. A framework of high performance interactive data mining on PC-cluster is proposed, and an interactive clustering algorithm for multidimensional data on the framework is presented.
منابع مشابه
Comparing k-means clusters on parallel Persian-English corpus
This paper compares clusters of aligned Persian and English texts obtained from k-means method. Text clustering has many applications in various fields of natural language processing. So far, much English documents clustering research has been accomplished. Now this question arises, are the results of them extendable to other languages? Since the goal of document clustering is grouping of docum...
متن کاملInteractive Cluster-Based Personalized Retrieval on Large Document Collections
Lately, many systems and websites add personalization functionalities among their provided services. However, for large document collections it is difficult for the user to direct effective queries from the beginning of his/her search, since accurate query terms may not be known in advance. In this paper we describe a system that applies a hybrid approach to assist a user identify the most rele...
متن کاملComparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps
Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006